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The potential energy:

After equating the maximum potential energy to the maximum kinetic 

energy,the squared frequency is found to be

The kinetic energy :
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Problem 1:
Calculate the fundamental frequency of the simply supported 

beam shown in Figure. The beam has constant stiffness EI and 

constant linear mass ¯m.
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Solution:
We first assume a parabolic displacement function that is 

expressed as

and which satisfies the boundary conditions ψ(x = 0) = ψ(x = l) = 0. 

The second derivative of the function with respect to x is

The maximum strain energy is
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Writing Vmax = Tmax, we find according to equation

from which

We get the maximum kinetic energy

Tmax
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2. We now assume a sinusoidal displacement function,

expressed as

which also satisfies the boundary conditions ψ(x = 0) = ψ(x = l) = 0. 

The second

derivative of this function with respect to x is

we get the maximum deformation energy
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from which

We get the maximum kinetic energy

Tmax
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Note:
The sinusoidal displacement function resulted in a frequency, ω, 

that is 11% lower than the value obtained with the parabolic 

function.

It is interesting to note that the selected sinusoidal function is 

actually the exact deformation shape of the first vibration mode 

of a simply supported beam and the calculated frequency is the 

exact frequency.
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Calculate the natural frequency of the simply supported uniform

beam in previous example . using a displacement function equal 

to the deformed shape of the beam subjected to 

(1) a uniformly distributed load equal to the unit weight of the

beam and

(2) a concentrated load equal to the total weight of the beam 

applied at mid span.

Problem 2:
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Solution:

1. We assume a displacement function equal to the deformed 

shape of the beam under a uniformly distributed load ¯p = ¯mg as 

shown in Figure.
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where zo = 5¯pl4/(384EI). ψ(x) satisfies the boundary conditions 

ψ(x = 0) =ψ(x = l) = 0. 

The second derivative of the function with respect to x is

we get the maximum deformation energy
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Writing Vmax = Tmax, we find according to equation

from which

We get the maximum kinetic energy

Tmax
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2. We assume a displacement function equal to the deformed 

shape of the beam under a concentrated load p = mg applied at 

mid span as shown in Figure

We will use the following displacement functions:
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where zo = pl3/(48EI). ψ(x) satisfies the boundary conditions 

ψ(x = 0) = ψ(x =l) = 0. 

The second derivatives of these functions are

we get the maximum deformation energy
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from which

We get the maximum kinetic energy

Tmax

Writing Vmax = Tmax, we find according to equation
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The same result would be obtained if the integration of the 

assumed deformed shape was carried out twice between the 

limits 0 ≤ l ≤ l/2 – a much easier solution – since the function is 

symmetric with respect to a vertical axis passing at l/2. 

The frequency calculated for an assumed deformed shape 

corresponding to a uniformly distributed load is less than the 

one obtained for an assumed deformed shape corresponding to 

a uniformly distributed load at mid span and is, therefore,

a better approximation of the true fundamental frequency.

The natural frequencies of the uniform beam in problem 1and 2 

canbe written as
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Estimations of the natural frequency of a simply supported 

uniform beam using the Rayleigh method are presented in Table 1, 

as a function of parameter α, for different displacement functions. 

The results illustrate the property of the Rayleigh quotient, which 

states that frequency values obtained with a displacement 

function that is different from the exact deformed shape of the

fundamental mode are always greater than the exact frequency.
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Table 1:

proplem1:

proplem2:

proplem2:

proplem1:


